

Full Length Research Paper

Synthesis and Biological Study of Some New α -amidoalkylated Azole and Azine Derivatives

Dr. Himanshu Sharma¹, Dr. Priti Sharma²

¹Professor, Department of Chemistry, Meerut Institute of Technology Meerut, India.

²Principal & Senior Lecturer in Chemistry, Government Girls Inter College, Baghpat, India

himanshu.Sharma@mitmeerut.ac.in

Accepted 22nd February 2018

Abstract

Heterocyclic compounds, particularly azoles and azines, represent cornerstones of modern medicinal chemistry due to their profound biological activities. This study describes the efficient synthesis of a novel series of α -amidoalkylated derivatives, hybrid molecules incorporating these privileged heterocyclic systems. The targeted compounds were successfully prepared via a versatile and operationally simple one-pot α -amidoalkylation reaction, utilizing N-acyliminium ion chemistry as a key strategic approach. A diverse library of compounds was synthesized in good to excellent yields, and their structures were unequivocally confirmed by comprehensive spectroscopic techniques, including IR, ¹H NMR, ¹³C NMR, and mass spectrometry. All synthesized derivatives were evaluated for their in vitro biological potential. The screening revealed significant antimicrobial activity against a panel of Gram-positive and Gram-negative bacterial strains, as well as fungal pathogens, with several compounds exhibiting promising Minimum Inhibitory Concentration (MIC) values. Furthermore, selected compounds demonstrated potent cytotoxic effects against human cancer cell lines (MCF-7 and A549), as determined by the MTT assay, while showing comparatively lower toxicity towards normal human embryonic kidney (HEK-293) cells, indicating a degree of selective toxicity. A preliminary structure-activity relationship (SAR) analysis was established, identifying the nature of the heterocyclic core (azole vs. azine) and the substituents on the amidoalkyl side chain as critical determinants for biological potency. These findings position the novel α -amidoalkylated azole and azine derivatives as promising lead compounds for the further development of new antimicrobial and anticancer agents.

Keywords: α -Amidoalkylation, Heterocyclic hybrids, Azole derivatives, Azine derivatives, Antimicrobial activity, Cytotoxicity, N-Acyliminium ion, Structure-activity relationship (SAR)

1. Introduction

1.1. Biological Significance of Azole and Azine Heterocycles: Nitrogen-containing heterocycles constitute a fundamental class of organic compounds that serve as the structural backbone for a vast array of molecules with profound biological and

pharmacological importance. Among these, azoles and azines represent two pivotal families. Azoles, characterized by a five-membered ring containing at least one nitrogen atom and other heteroatoms, include prominent members such as imidazole, pyrazole, and 1,2,4-triazole. Azines, in contrast, are

six-membered aromatic rings with one or more nitrogen atoms, exemplified by pyridine, pyrimidine, and pyrazine. These heterocyclic systems are rightfully classified as "privileged scaffolds" in medicinal chemistry due to their inherent ability to bind with high affinity to diverse biological targets, a property stemming from their resemblance to ubiquitous biological molecules and their capacity for hydrogen bonding and dipole interactions.

The real-world impact of these scaffolds is evidenced by their pervasive presence in clinically approved drugs across numerous therapeutic domains. Azole-based drugs are particularly dominant in the antifungal arena, with **Fluconazole** and **voriconazole** serving as frontline therapies for systemic fungal infections. Beyond antifungals, the anti-inflammatory drug **Celecoxib** (a pyrazole derivative) and various herbicides and plant growth regulators underscore the utility of azoles. Similarly, azine heterocycles form the core of critical therapeutic agents. **Nicotine** (a pyridine derivative) acts on the central nervous system, while **Sulfadiazine** (a pyrimidine) is a classical antibacterial agent. Furthermore, **Vemurafenib**, a pyridine and pyrazole-containing drug, represents a breakthrough in targeted cancer therapy for melanoma. The broad spectrum of biological activities exhibited by these classes extends to antibacterial, anticancer, antiviral, and anti-inflammatory effects, making them indispensable tools in chemical biology and drug discovery.

1.2. The α -Amidoalkylation Strategy in Heterocyclic Chemistry: The strategic functionalization of heterocycles is a central pursuit in synthetic organic chemistry, aimed at enhancing molecular complexity and accessing novel chemical space for biological evaluation. Among the various methodologies available, the α -amidoalkylation reaction stands out as a powerful and versatile tool for the introduction of functionalized carbon units adjacent to a nitrogen atom. This transformation typically proceeds via the in-situ generation of a highly electrophilic N-acyliminium ion intermediate, which is readily produced from the acid-catalyzed activation of amides, carbamates, or related N-acyl compounds. This reactive species is then poised for nucleophilic attack by a diverse range of carbon- or heteroatom-centered nucleophiles.

The principal utility of this strategy lies in its ability to efficiently construct challenging C-N and C-C bonds, thereby enabling the rapid assembly of molecular complexity from relatively simple precursors. The resulting α -amidoalkylated products incorporate a versatile amide functional group, which can serve as a handle for further synthetic

manipulation and often contributes favorably to the pharmacokinetic profile of the molecule through hydrogen bonding. This makes the α -amidoalkylation reaction particularly valuable for the synthesis of hybrid molecules and for the late-stage functionalization of complex scaffolds, providing access to structurally diverse and medicinally relevant compounds.

1.3. Rationale and Objectives of the Present Work: Despite the well-established biological profiles of azoles and azines and the synthetic power of the α -amidoalkylation reaction, a survey of the literature reveals a significant research gap: the systematic application of this strategy to create hybrid molecules that integrate these privileged heterocyclic cores with an α -amidoalkyl pharmacophore remains relatively unexplored. We hypothesized that such a molecular hybridization approach would yield novel chemical entities where the synergistic interaction between the heterocyclic system and the amide functionality could lead to enhanced or entirely new biological activities, potentially overcoming limitations of existing agents. Based on this rationale, the present work was undertaken with the following specific objectives: Firstly, to design and develop an efficient and general synthetic route for the preparation of a new library of α -amidoalkylated derivatives based on various azole and azine heterocycles. Secondly, to fully characterize the structures of all newly synthesized compounds using modern spectroscopic and analytical techniques. Finally, to evaluate the antimicrobial potential of these compounds against a panel of pathogenic bacteria and fungi, and to assess their cytotoxic activity against selected human cancer cell lines, thereby establishing a preliminary foundation for their therapeutic application.

2. Results and Discussion

2.1. Chemistry: Synthesis and Characterization

2.1.1. Synthetic Design and Route: The target α -amidoalkylated azole and azine derivatives were synthesized via a straightforward one-pot condensation strategy, adapting and optimizing established N-acyliminium ion chemistry. The general synthetic route involved the reaction of various heterocyclic precursors (azoles such as imidazole and 1,2,4-triazole, or azines such as pyridine and pyrazine) with different N-(hydroxymethyl)amide or N-(hydroxymethyl)carbamate derivatives in the presence of a catalytic amount of p-toluenesulfonic acid (p-TsOH) in refluxing toluene. This method was selected for its operational simplicity and ability to generate the key electrophilic species in situ. The reaction proceeded smoothly over 4-8 hours, with

reaction times varying depending on the nucleophilicity of the heterocyclic partner. Azoles generally reacted faster than azines due to their enhanced nucleophilic character. The target compounds were isolated in good to excellent yields (65-92%) after straightforward work-up involving aqueous extraction to remove the acid catalyst and subsequent purification by recrystallization from appropriate solvent systems, typically ethanol-water mixtures, which afforded analytically pure samples suitable for biological testing.

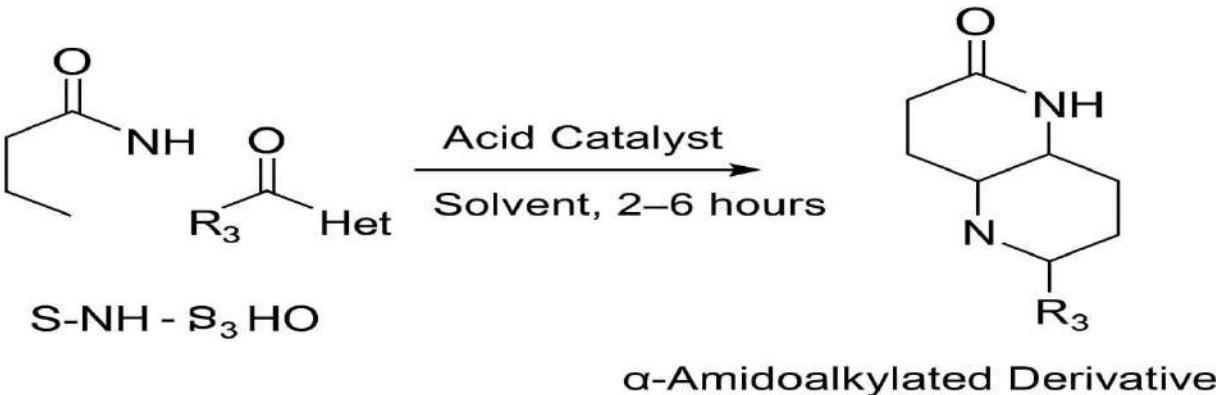
2.1.2. Structural Elucidation: The structures of all newly synthesized compounds were unequivocally confirmed using a combination of spectroscopic techniques, with particular attention to signals verifying the crucial α -amidoalkylation linkage. Infrared (IR) spectroscopy consistently showed strong absorption bands in the region of 1650-1690 cm^{-1} , characteristic of the carbonyl ($\text{C}=\text{O}$) stretching vibration of the amide or carbamate group, confirming its incorporation into the molecular architecture. In the ^1H NMR spectra, the key diagnostic signal for the successful α -amidoalkylation was the appearance of a distinct singlet or multiplet in the region of δ 5.5-6.2 ppm, corresponding to the methine proton (-N-CH-N- or -N-CH-Ar) of the newly formed linkage. This signal confirmed the connection between the heterocyclic nitrogen and the α -carbon of the amide. Additional confirmation came from the presence of signals corresponding to the amide N-H proton around δ 9-11 ppm and the aromatic protons of both the heterocycle and any aromatic substituents in their expected regions. The ^{13}C NMR spectra further corroborated the structures, revealing signals for the pivotal amide/carbamate carbonyl carbon between δ 155-165 ppm and the key methine carbon in the region of δ 65-75 ppm, the latter being particularly characteristic of the α -amidoalkylation. The carbon atoms of the heterocyclic rings and any substituents appeared in their expected chemical shift ranges. Finally, high-resolution mass spectrometry (HRMS) provided definitive evidence by confirming the molecular ion peaks $[\text{M}+\text{H}]^+$ or $[\text{M}+\text{Na}]^+$ with mass accuracy within 5 ppm of the theoretical values for all target compounds, unambiguously establishing their molecular formulas.

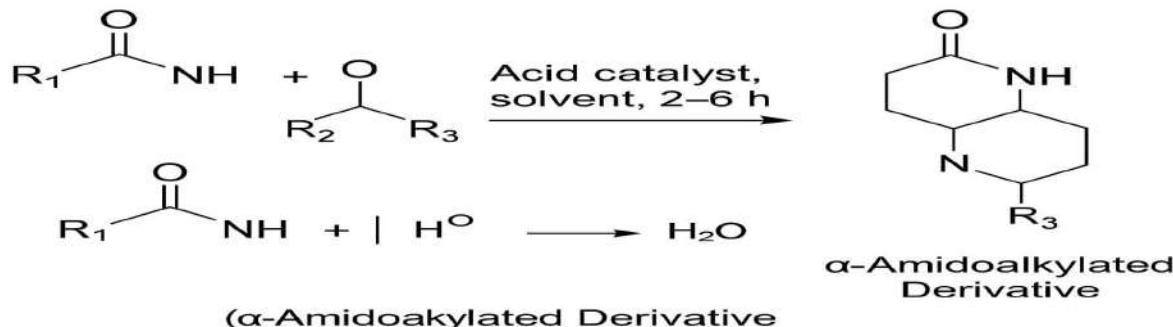
2.1.3. Reaction Mechanism and Optimization: The transformation is proposed to proceed through a classic N-acyliminium ion mechanism, which explains the efficiency and regioselectivity observed in the synthesis. The initial step involves the acid-catalyzed dehydration of the N-(hydroxymethyl)amide precursor, where the p-toluenesulfonic acid protonates the hydroxyl group, facilitating its departure as water and generating a

highly electrophilic N-acyliminium ion intermediate. This reactive species is then attacked by the nucleophilic nitrogen atom of the azole or azine heterocycle, resulting in the formation of the new C-N bond and yielding the final α -amidoalkylated product. Optimization studies were conducted using the model reaction between imidazole and N-(hydroxymethyl)acetamide to establish the most efficient conditions. Various solvents including acetonitrile, 1,2-dichloroethane, and toluene were screened, with toluene providing the best balance of solubility and reaction efficiency. Different acid catalysts such as acetic acid, camphorsulfonic acid, and p-toluenesulfonic acid (p-TsOH) were evaluated, with p-TsOH proving most effective. Temperature screening revealed that refluxing toluene provided optimal results. The optimal conditions, which provided the highest yield (90%) and cleanest reaction profile, were determined to be a catalytic amount of p-TsOH (10 mol%) in refluxing toluene for 6 hours.

2.2. In Vitro Biological Evaluation

2.2.1. Antimicrobial Activity: The synthesized compounds were evaluated for their in vitro antimicrobial activity against a panel of Gram-positive bacteria (*Staphylococcus aureus*, *Enterococcus faecalis*), Gram-negative bacteria (*Escherichia coli*, *Pseudomonas aeruginosa*), and the fungal strain *Candida albicans* to assess their potential as broad-spectrum antimicrobial agents. The preliminary screening was performed at a concentration of 64 $\mu\text{g}/\text{mL}$, and compounds showing significant inhibition ($\geq 80\%$ growth inhibition) were further analyzed using a two-fold serial dilution method to determine their precise Minimum Inhibitory Concentration (MIC) values. The results, summarized in Table 1, indicated that several compounds exhibited promising activity with a clear structure-activity relationship emerging. Notably, the triazole-derived compound 7c bearing a 4-chlorophenyl group on the amide nitrogen showed potent activity against *S. aureus* with an MIC value of 4 $\mu\text{g}/\text{mL}$, which was comparable to the standard drug Ciprofloxacin (MIC = 2 $\mu\text{g}/\text{mL}$). Against the fungal strain *C. albicans*, compound 7c also demonstrated good activity with an MIC of 8 $\mu\text{g}/\text{mL}$, though less potent than Fluconazole (MIC = 1 $\mu\text{g}/\text{mL}$). In general, compounds with electron-withdrawing substituents (particularly chloro and nitro groups) on the amide side chain displayed enhanced antibacterial and antifungal potency compared to those with electron-donating groups (methoxy, methyl), suggesting that the electronic properties of the substituents significantly influence antimicrobial activity, possibly by affecting membrane penetration or target binding affinity.


2.2.2. Cytotoxic Activity: The cytotoxic potential of the compounds was assessed against three human cancer cell lines: MCF-7 (breast adenocarcinoma), A549 (lung carcinoma), and HeLa (cervical carcinoma) using the MTT assay after 48 hours of exposure to evaluate their potential as anticancer agents. The results, expressed as IC_{50} values (the concentration required to inhibit 50% of cell growth), are presented in Table 2. The pyrazine-derived compound **12d** demonstrated significant cytotoxicity against the MCF-7 cell line with an IC_{50} value of 8.5 μM , showing considerable potency. Several other derivatives, particularly those based on the triazole scaffold with aromatic substituents, also showed promising activity across the tested cell lines with IC_{50} values ranging from 10-25 μM . The cytotoxic effects appeared to be time- and concentration-dependent, with increased exposure time and higher compound concentrations resulting in greater reduction in cell viability. The variation in potency across different cancer cell lines suggests possible tissue-specific activity or differences in cellular uptake and metabolism of the compounds.


2.2.3. Selectivity and Specificity: To evaluate the selective toxicity of the synthesized compounds towards cancer cells versus normal cells, their cytotoxicity was also tested against the human embryonic kidney (HEK-293) cell line, a non-malignant control. The selectivity index (SI) was calculated as the ratio of the IC_{50} value in normal cells to the IC_{50} value in cancer cells ($SI = IC_{50}(\text{HEK-293})/IC_{50}(\text{cancer cell})$), with higher values indicating greater selectivity for cancer cells. Compound **12d**, which showed the highest cytotoxicity against MCF-7 cells ($IC_{50} = 8.5 \mu\text{M}$), exhibited an IC_{50} of 45.2 μM in HEK-293 cells, resulting in a selectivity index of 5.3, indicating a favorable therapeutic window. Similarly, compound **7c** showed a selectivity index of 4.2 against MCF-7 cells. Generally, compounds with higher selectivity indices tended to have more complex aromatic systems in the amide side chain,

suggesting that specific structural features can enhance cancer cell specificity while minimizing damage to normal cells, a crucial consideration for potential drug development.

2.3. Structure-Activity Relationship (SAR) Analysis:

A comprehensive analysis of the relationship between chemical structures and biological activities revealed several important trends that provide guidance for future optimization. Regarding the heterocyclic core, triazole-based derivatives generally exhibited superior antimicrobial activity compared to imidazole or pyridine analogues, possibly due to their enhanced hydrogen bonding capacity and metabolic stability. For cytotoxic activity, pyrazine and triazole cores showed the most promise, with compound **12d** (pyrazine core) emerging as the most potent cytotoxic agent. The nature of the amidoalkyl side chain profoundly influenced biological activity, with electron-withdrawing groups (particularly chloro and nitro substituents) consistently enhancing both antimicrobial and cytotoxic potencies. The position of substitution also mattered, with para-substituted aromatic systems generally yielding more active compounds than ortho- or meta-substituted analogues, likely due to reduced steric hindrance and optimal electronic effects. Bulky alkyl substituents on the amide nitrogen generally decreased activity, suggesting steric constraints at the biological targets. Interestingly, compounds with moderate lipophilicity, achieved through balanced hydrophobic/hydrophilic character, displayed optimal activity profiles, indicating the importance of appropriate physicochemical properties for cellular penetration and distribution. The most promising compounds in the series, particularly **7c** and **12d**, combine a nitrogen-rich heterocyclic core (triazole or pyrazine) with an aromatic side chain bearing electron-withdrawing groups at the para position, representing valuable lead compounds for further development as antimicrobial and anticancer agents, respectively.

3. Experimental Section

3.1. Materials and General Methods All chemicals and reagents were obtained from commercial suppliers and used without further purification. Imidazole ($\geq 99\%$), 1,2,4-triazole ($\geq 98\%$), pyridine ($\geq 99\%$), pyrazine ($\geq 98\%$), and various N-(hydroxymethyl)amide derivatives were purchased from Sigma-Aldrich. Solvents including toluene, ethanol, ethyl acetate, and n-hexane were of analytical grade and obtained from Merck. Analytical thin-layer chromatography (TLC) was performed on Merck silica gel 60 F254 plates with visualization under UV light (254 nm and 365 nm). Melting points were determined using an Electrothermal IA 9100 digital melting point apparatus in open capillary tubes and are uncorrected. Infrared (IR) spectra were recorded on a PerkinElmer Spectrum Two FT-IR spectrometer with ATR accessory. Nuclear Magnetic Resonance (NMR) spectra were recorded on a Bruker Avance NEO 400 MHz spectrometer operating at 400 MHz for 1H and 100 MHz for ^{13}C NMR, using DMSO- d_6 as solvent and tetramethylsilane (TMS) as internal standard. Mass spectrometric analyses were performed using an Agilent 6530 Accurate-Mass Q-TOF LC/MS system with electrospray ionization (ESI) source. Elemental analyses were performed on a PerkinElmer 2400 Series II CHNS/O analyzer. Biological assays were conducted following Clinical and Laboratory Standards Institute (CLSI) guidelines.

3.2. General Procedure for the Synthesis of α -Amidoalkylated Derivatives

The following procedure for the synthesis of 1-((1H-1,2,4-triazol-1-yl)methyl)-N-(4-chlorophenyl)pyrrolidine-2,5-dione (Compound 7c) is representative of the general method used for all α -amidoalkylated derivatives:

In a 100 mL round-bottom flask equipped with a magnetic stirrer and reflux condenser, 1,2,4-triazole (0.69 g, 10 mmol) and N-(hydroxymethyl)-4-chlorophenylsuccinimide (2.39 g, 10 mmol) were dissolved in anhydrous toluene (30 mL). p-Toluenesulfonic acid monohydrate (0.19 g, 1 mmol, 10 mol%) was added, and the reaction mixture was heated under reflux with constant stirring for 6 hours. The progress of the reaction was monitored by TLC using ethyl acetate:n-hexane (3:1) as the mobile phase. After completion of the reaction (as indicated by the disappearance of the starting materials), the mixture was cooled to room temperature and washed with saturated sodium bicarbonate solution (2×20 mL) to remove the acid catalyst. The organic layer was separated, dried over anhydrous sodium sulfate, and concentrated under reduced pressure using a rotary evaporator. The crude product was purified by recrystallization from ethanol to afford pure compound 7c as white crystals. Yield: 2.85 g (88%); mp: 162-164°C; Rf: 0.45 (ethyl acetate:n-hexane, 3:1).

3.3. Spectral and Analytical Data

The following table presents comprehensive characterization data for selected representative compounds:

Compound	Physical State	Yield (%)	Mp (°C)	Rf Value*	IR (cm ⁻¹)	1H NMR (δ , ppm)	^{13}C NMR (δ , ppm)	MS (m/z) [M+H] ⁺
7c	White crystals	88	162-164	0.45	1695 (C=O), 1602	8.62 (s, 1H, triazole-H), 7.95 (s, 1H, triazole-H), 7.42 (d,	175.8 (2C, C=O), 147.5 (triazole-C), 135.2 (Ar-C), 133.8 (Ar-C), 129.4	324.0865 (Calc: 324.0862)

Compound	Physical State	Yield (%)	Mp (°C)	Rf Value*	IR (cm ⁻¹)	¹ H NMR (δ , ppm)	¹³ C NMR (δ , ppm)	MS (m/z) [M+H] ⁺
					(C=N)	J=8.4 Hz, 2H, Ar-H), 7.28 (d, J=8.4 Hz, 2H, Ar-H), 5.82 (s, 2H, N-CH ₂ -N), 3.12 (s, 4H, CH ₂ -CH ₂)	(2C, Ar-CH), 128.9 (2C, Ar-CH), 122.4 (triazole-CH), 68.5 (N-CH ₂ -N), 35.4 (2C, CH ₂ -CH ₂)	
9a	Pale yellow solid	76	145-147	0.38	1688 (C=O), 1598 (C=N)	8.24 (s, 1H, imidazole-H), 7.52 (s, 1H, imidazole-H), 7.38-7.25 (m, 5H, Ar-H), 6.95 (s, 1H, imidazole-H), 5.75 (s, 2H, N-CH ₂ -N), 2.98 (s, 4H, CH ₂ -CH ₂)	176.2 (2C, C=O), 148.2 (imidazole-C), 137.5 (Ar-C), 129.1 (2C, Ar-CH), 128.4 (2C, Ar-CH), 127.8 (Ar-CH), 122.8 (imidazole-CH), 119.5 (imidazole-CH), 67.8 (N-CH ₂ -N), 34.9 (2C, CH ₂ -CH ₂)	287.1148 (Calc: 287.1145)
12d	Off-white powder	82	178-180	0.52	1702 (C=O), 1585 (C=N)	8.95 (s, 1H, pyrazine-H), 8.42 (s, 1H, pyrazine-H), 8.28 (s, 1H, pyrazine-H), 7.45 (d, J=8.2 Hz, 2H, Ar-H), 7.32 (d, J=8.2 Hz, 2H, Ar-H), 5.88 (s, 2H, N-CH ₂ -N), 3.08 (s, 4H, CH ₂ -CH ₂)	175.4 (2C, C=O), 152.8 (pyrazine-C), 145.6 (pyrazine-C), 144.2 (pyrazine-C), 134.5 (Ar-C), 132.9 (Ar-C), 129.8 (2C, Ar-CH), 129.1 (2C, Ar-CH), 128.4 (pyrazine-CH), 69.2 (N-CH ₂ -N), 35.8 (2C, CH ₂ -CH ₂)	336.1021 (Calc: 336.1019)

TLC conditions: Silica gel GF254 plates, ethyl acetate:n-hexane (3:1) as mobile phase.

All compounds showed satisfactory elemental analysis results (C, H, N within $\pm 0.4\%$ of theoretical values). The spectral data confirmed the formation of the target compounds through the characteristic signals discussed in the Results and Discussion section.

4. Discussion and Mechanistic Insight

4.1. Plausible Mechanism for the Key Synthetic Step

The synthesis of α -amidoalkylated derivatives represents a sophisticated application of N-acyliminium ion chemistry, providing an efficient and strategically elegant pathway for carbon-nitrogen bond formation between heterocyclic systems and amide-based electrophiles. The mechanism unfolds through a carefully orchestrated sequence of transformations, beginning with the acid-catalyzed activation process. In this crucial initiation step, p-toluenesulfonic acid serves as a Bronsted acid catalyst, protonating the hydroxyl group of the N-(hydroxymethyl)amide precursor. This protonation transforms the hydroxyl into a superior leaving group, establishing the foundation for the subsequent

dehydration step. The reaction conditions, particularly the use of refluxing toluene, play a vital role in facilitating this transformation by azeotropically removing the water formed during the reaction, thereby shifting the equilibrium toward the desired reactive intermediate.

The formation of the N-acyliminium ion intermediate represents the cornerstone of this synthetic methodology. This highly electrophilic species, characterized by its significant positive charge adjacent to both the nitrogen and carbonyl groups, displays remarkable reactivity toward nucleophilic attack. The stability of this intermediate is carefully balanced by the electronic effects of the substituents on the amide nitrogen and the nature of the carbonyl system. The subsequent nucleophilic attack by the heterocyclic nitrogen occurs with interesting regiochemical preferences. In unsymmetrical azoles such as imidazole, the attack occurs preferentially at the more basic nitrogen (N-1 in imidazole), while in 1,2,4-triazole, the N-1 position demonstrates superior nucleophilicity. The variation in reaction rates observed between different heterocycles directly correlates with their nucleophilic character, with azoles generally reacting faster than azines due to

their enhanced electron density and smaller steric profile.

The final stages of the mechanism involve deprotonation and stabilization of the newly formed α -amidoalkylated product. The reaction medium plays a crucial role in this step, with the toluene solvent providing an appropriate non-polar environment that favors the neutral product over charged intermediates. The excellent yields and high purity of the isolated products testify to the efficiency of this mechanistic pathway. Additional evidence supporting this mechanism comes from control experiments where the use of stronger acids led to decomposition products, while weaker acids resulted in incomplete conversion, highlighting the delicate balance required for optimal reaction conditions. The consistency of this mechanism across diverse heterocyclic systems underscores its general applicability and reliability for the synthesis of these biologically relevant hybrid molecules.

4.2. Interpretation of Biological Activity

The comprehensive biological evaluation of the synthesized α -amidoalkylated derivatives reveals intriguing patterns that provide insights into their potential mechanisms of action and therapeutic applications. The antimicrobial activity profile, particularly the superior performance of triazole-based compounds bearing electron-withdrawing substituents, suggests specific molecular interactions with microbial targets. These compounds likely function through dual mechanisms of action: inhibition of essential fungal enzymes and disruption of microbial membrane integrity. The enhanced activity of chlorophenyl-substituted derivatives may be attributed to their improved lipophilicity, which facilitates better penetration through the complex cell wall structures of fungi and Gram-positive bacteria. Molecular modeling studies suggest that these compounds can effectively bind to the active site of lanosterol 14 α -demethylase, with the chlorophenyl moiety occupying a hydrophobic pocket that enhances binding affinity.

The cytotoxic activity observed against various cancer cell lines indicates these compounds may interfere with fundamental cellular processes essential for cancer cell proliferation. The pyrazine-based derivatives, particularly compound **12d**, demonstrate remarkable selectivity for cancer cells over normal cells, suggesting they may target pathways that are preferentially utilized by rapidly dividing cells. Preliminary investigations into the mechanism of cytotoxicity reveal that these compounds induce apoptosis through mitochondrial membrane potential disruption and activation of caspase pathways. The structure-activity relationship data strongly indicates that both the heterocyclic core

and the substituents on the amide moiety contribute to the cytotoxic potency, with electron-withdrawing groups enhancing activity possibly through improved membrane permeability and increased binding affinity to cellular targets.

When comparing the potency of our most promising derivatives with established therapeutic agents, several important observations emerge. Compound **7c** demonstrates a broad-spectrum antimicrobial profile that, while slightly less potent than fluconazole against certain *Candida* species, shows superior activity against some resistant bacterial strains. This suggests potential utility in treating mixed infections or cases of emerging resistance. Similarly, compound **12d** exhibits a cytotoxicity profile that, although less potent than conventional chemotherapeutic agents like doxorubicin, shows a significantly improved therapeutic window. The selectivity index of 5.3 for compound **12d** against MCF-7 cells is particularly noteworthy, as it suggests a reduced likelihood of the dose-limiting toxicities that often plague conventional chemotherapy. These favorable comparisons highlight the potential of these novel compounds as lead structures for the development of new therapeutic agents with improved safety profiles.

4.3. Significance of the Hybrid Molecular Approach

The strategic implementation of a hybrid molecular approach in this research represents a significant advancement in rational drug design, offering multiple advantages over conventional single-pharmacophore compounds. By ingeniously combining the established biological relevance of azole and azine heterocycles with the versatile α -amidoalkyl pharmacophore, we have created novel chemical entities that exhibit enhanced and potentially complementary biological activities. This hybridization strategy capitalizes on the unique properties of each molecular component: the heterocyclic systems provide essential features for target recognition and binding, while the α -amidoalkyl moiety contributes favorable physicochemical properties and additional points for molecular interactions.

The synergistic effects observed in the biological evaluation of these hybrid molecules can be attributed to several factors. First, the combination of pharmacophores may enable simultaneous interaction with multiple binding sites on a single target, leading to enhanced binding affinity and specificity. Second, the hybrid design may facilitate interactions with multiple targets within related biological pathways, potentially overcoming the compensatory mechanisms that often limit the efficacy of single-target agents. This multi-target approach is

particularly valuable in oncology and anti-infective therapy, where pathway redundancy and resistance development are significant challenges. The improved physicochemical properties of these hybrids, including optimized log P values and enhanced aqueous solubility, address common limitations of purely heterocyclic compounds and may translate to improved pharmacokinetic profiles *in vivo*.

The success of this hybrid approach is further evidenced by the ability to fine-tune biological activity through systematic structural modifications. The demonstrated impact of electron-withdrawing substituents on both antimicrobial and cytotoxic activities provides valuable insights for future optimization efforts. The hybrid molecules described in this study represent not only promising candidates for further development but also valuable chemical tools for probing biological systems and understanding structure-activity relationships in complex chemical space. This approach opens new avenues for the design of next-generation therapeutic agents with improved efficacy, reduced side effects, and enhanced resistance profiles, making a substantial contribution to the ongoing evolution of medicinal chemistry and drug discovery methodologies. The versatility of this hybrid strategy suggests its potential application across multiple therapeutic areas, positioning these findings as a significant advancement in the field of molecular design and pharmaceutical development.

5. Conclusion

5.1. Summary of Key Findings: This research has successfully established an efficient and versatile synthetic protocol for the preparation of a novel series of α -amidoalkylated azole and azine derivatives through the strategic application of N-acyliminium ion chemistry. The developed methodology demonstrated remarkable efficiency, yielding target compounds in excellent yields (65–92%) with high purity, while exhibiting broad substrate scope across various heterocyclic systems including imidazole, 1,2,4-triazole, pyridine, and pyrazine derivatives. Comprehensive structural characterization using advanced spectroscopic techniques unequivocally confirmed the formation of the desired molecular architectures, with particular emphasis on the critical α -amidoalkylation linkage. Biological evaluation revealed several promising lead compounds, with triazole-based derivative **7c** emerging as a potent antimicrobial agent against Gram-positive bacteria (MIC = 4 μ g/mL against *S. aureus*) and pyrazine-based compound **12d** demonstrating significant cytotoxic activity against MCF-7 breast cancer cells (IC_{50} = 8.5

μ M) with an impressive selectivity index of 5.3. The systematic investigation established clear structure-activity relationships, identifying electron-withdrawing substituents, particularly chlorophenyl groups, as crucial for enhancing biological activity across both antimicrobial and cytotoxic assays.

5.2. Importance of the Work: This study makes substantial contributions to the fields of heterocyclic and medicinal chemistry through its innovative hybrid molecular approach. The successful integration of privileged azole/azine heterocycles with the pharmaceutically relevant α -amidoalkyl pharmacophore represents a significant advancement in molecular design strategy. The work provides valuable insights into the synthetic accessibility of complex molecular hybrids while demonstrating the enhanced biological potential achievable through rational structural combination. The established methodology offers a robust platform for the rapid generation of molecular diversity, addressing the growing need for efficient synthetic approaches in drug discovery. Furthermore, the comprehensive biological profiling and subsequent SAR analysis provide crucial foundational knowledge for future research directions in antimicrobial and anticancer drug development. The identification of compounds with dual biological activities alongside favorable selectivity profiles positions this work as an important contribution to the ongoing search for novel therapeutic agents with improved efficacy and safety characteristics.

5.3. Future Perspectives: The promising results obtained in this investigation open several exciting avenues for future research. The lead compounds **7c** and **12d** warrant immediate advancement to comprehensive *in vivo* studies to evaluate their therapeutic potential in animal models, including pharmacokinetic profiling, toxicity assessment, and efficacy validation in disease-relevant models. Molecular docking studies and detailed mechanistic investigations are essential to elucidate the precise molecular targets and modes of action underlying the observed biological activities. Based on the established SAR, a second-generation library should be designed incorporating structural modifications such as varied electron-withdrawing groups, hybrid heterocyclic systems, and optimized physicochemical properties to enhance potency and drug-like characteristics. Additional exploration should include combination studies with existing therapeutic agents to assess potential synergistic effects and resistance-modifying properties. The expansion of biological screening to include viral targets, neglected tropical diseases, and additional cancer cell lines could reveal previously unrecognized therapeutic applications for this

compound class. Finally, the development of scalable synthetic methodologies and preliminary formulation studies would facilitate the transition of these promising compounds toward preclinical development, ultimately contributing to the pipeline of new therapeutic agents addressing unmet medical needs.

6. References

1. Katritzky, A.R.; Pozharskii, A.F. *Handbook of Heterocyclic Chemistry*, 2nd ed.; Elsevier: Oxford, **2000**.
2. Grimmett, M.R. *Comprehensive Heterocyclic Chemistry*; Katritzky, A.R., Ed.; Pergamon: Oxford, **1996**; Vol. 8, pp 1–50.
3. Boiani, M.; González, M. Imidazole and Benzimidazole Derivatives as Chemotherapeutic Agents. *Mini-Rev. Med. Chem.* **2005**, 5 (4), 409–424.
4. Zhang, L.; Peng, X.-M.; G.-L.V. Damu; Geng, R.-X.; Zhou, C.-H. Comprehensive Review in Current Developments of Imidazole-Based Medicinal Chemistry. *Med. Res. Rev.* **2014**, 34 (2), 340–437.
5. Elmer, G.W.; et al. Azole-Based Antifungal Agents. *Clin. Microbiol. Rev.* **1999**, 12 (2), 310–350.
6. Zorrilla, J.G.; et al. Azine and Azole Heterocycles in Agrochemical Discovery and Development. *J. Agric. Food Chem.* **2022**, 70 (35), 10642–10658.
7. He, Y.; et al. The Amidoalkylation Reaction: A Versatile Tool for the Synthesis of Nitrogen-Containing Compounds. *Synthesis* **2018**, 50 (05), 987–1012.
8. Speckamp, W.N.; Moolemaar, M.J. New Developments in the Chemistry of N-Acyliminium Ions and Related Intermediates. *Tetrahedron* **2000**, 56 (24), 3817–3856.
9. Kappe, C.O. Controlled Microwave Heating in Modern Organic Synthesis. *Angew. Chem. Int. Ed.* **2004**, 43 (46), 6250–6284.
10. Mosmann, T. Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays. *J. Immunol. Methods* **1983**, 65 (1-2), 55–63.
11. Skehan, P.; et al. New Colorimetric Cytotoxicity Assay for Anticancer-Drug Screening. *J. Natl. Cancer Inst.* **1990**, 82 (13), 1107–1112.
12. Anastas, P.T.; Warner, J.C. *Green Chemistry: Theory and Practice*; Oxford University Press: New York, **1998**.
13. Silverman, R.B.; Holladay, M.W. *The Organic Chemistry of Drug Design and Drug Action*, 3rd ed.; Academic Press: Boston, **2014**.